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FOREWORD

This final report summarizes the research performed by S-CUBED under AFOSR
Contract F49620-84-C-0029 during the period from March 1, 1984, to July 31, 1988.
Partial support for portions of the research was provided by the Defense Nuclear
Agency under Contract DNAQ01-84-C-0127. The Co-Principal Investigators for the
project were Dr. G. A. Hegemier and Dr. H. E. Read. The AFOSR Contract
Technical Monitors were, initially, Lt. Col. L. D. Hokanson and, later on, Dr. Spencer

T. Wu.

Drs. Hegemier and Murakami, Consultants to S-CUBED, are also, respectively,
Professor and Associate Professor of Applied Mechanics at the University of California,
San Diego. Dr. Valanis, an S-CUBED Consultant, presently operates his own research
and consulting company, called ENDOCHRONICS, Inc.

The authors express their appreciation to Dr. D. H. Brownell and Mr. R. G.
Herrmann, who provided excellent computational support throughout the course of the
research,
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ADVANCED CONSTITUTIVE MODELING OF
PLAIN AND REINFORCED CONCRETES

Section 1
INTRODUCTION

1.1 BACKGROUND.

During the past several years, the Air Force has been deeply involved in an
extensive effort to develop, and assess the feasibility and relative effectiveness of,
various candidate modes for basing the MX strategic weapons system. In most of
these basing modes, the key elements are large reinforced concrete structures, called
protective structures, which are designed to protect a missile from the shock loads
prescribed by the design attack scenarios. The enormous costs involved in
constructing the large number of such structures required by the system dictates that
their design be not only safe, but cost-effective as well.

In the event that the enemy threat changes, it is also important for the strategic
system designer to know the ultimate hardness of the concrete protective structures,
so that the survivability of the system with regard to the new threat can be readily
assessed. The most expeditious and economical way to do this is through the use of
validated analytical models of the structure’s behavior. There is. accordingly, a need to
have reliable analytical models that can predict the loading environments for which
complex reinforced concrete structures will collapse, or incur sufficient damage to
render them functionally inoperable.

1.2 OBJECTIVE

The objective of the overall research program described here is to construct an
advanced, nonlinear, multi-axial, non-phenomenological constitutive model of reinforced
concrete that will provide simulation accuracy in the nonlinear response regime that is
superior to existing models. The term ‘advanced nonlinear multi-axial’ implies a
model that provides greater accuracy than existing models in the inelastic, nonlinear
response regime and for arbitrary paths in multi-axial stress or strain space. The
term ‘non-phenomenological’ implies a model that is capable of synthesizing the global
properties of reinforced concrete from knowledge of the plain concrete and steel
properties, the concrete-steel interface properties, and the geometry of the steel
reinforcement.




A non-phenomenological reinforced concrete theory requires, as input, constitutive

models for each of the basic constituents, namely, steel rebar and plain concrete.
The accuracy of the resulting reinforced concrete theory depends heavily on the
accuracy with which one can model these two constituents. The constitutive
properties of steel are well known and can be adequately represented by reasonable
simple elasto-plastic models. Plain concrete, on the other hand, is one of the most
complex structural materials in current use and, despite numerous efforts in recent
years to mathematically model its properties, there is today still no model which can
adequately describe its nonlinear constitutive properties over a wide range of behavior,
including damage accumulation and post-cracking response. As a result, the major
challenges that one faces in attempting to develop an accurate constitutive theory for
reinforced concrete are twofold; namely, (1) development of a mixture theory which
accurately accounts for the interaction between the rebar and plain concrete; and
(2) formulation of a constitutive theory for plain concrete which adequately describes
its nonlinear, inelastic properties, including damage and cracking, for arbitrary, multi-
axial load paths. Accordingly, two major areas of research have been pursued in
paraliel, concurrent efforts under the present program; namely, (1) development of a
mixture theory which accounts for concrete-rebar interaction in a realistic manner; and
(2) development of a plain concrete model.

Detailed documentation of the research conducted during the first three years of

this study can be found in the Annual Reports by Hegemier, Read, Valanis and
Murakami (1985, 1986, 1987). Details of the research performed during the past
(fourth) year are described in the topical reports by Hegemier, Murakami and Sweet
(1988) and by Read (1988). The major accomplishments made during the course
of the entire program are summarized in this report, and the reader is referred to
either the Annual Reports or to the various published papers and Topical reports for
further details of the research accomplishments.

*

%

A list of the publications which resulted from this contract is given in Section 4.

These topical reports are included as part of the present report in Appendices A
and B.
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Section 2
REINFORCED CONCRETE

2.1 THE PROBLEM.

The nonlinear, inelastic behavior of reinforced concrete is dominated by complex
interactions between the steel rebar and the concrete. These interactions have a
major effect on structural characteristics such as stiffness, strength. damping and
ductility. As a result, it is necessary that a model of reinforced concreie reflect these
phenomena in an accurate and realistic manner. Further, in an effort to minimize the
number and types of tests necessary to define model parameters, it is desirable that
the model be non-phenomenological, i.e., that the global properties of reinforced
concrete be synthesized from the properties of (1) the steel and concrete, (2) the
steel-concrete interface physics and (3) the steel layout.

2.2 ACCOMPLISHMENTS.

A theoretical formulation of the type outlined above constitutes a new, advanced
model of reinforced concrete which has predictive capabilities far superior to existing
models. In an effort to bring such a model to fruition, the following tasks were
accomplished as part of this program:

1. Formulation of a methodology for constructing an advanced
theoretical model of reinforced concrete which correctly reflects
steel-concrete interaction;

2. Construction of a first generation model of reinforced concrete using
the results from the above task;

3. Construction of numerical algorithms and a special-purpose computer
program which allows one to exercise the developed model for a
limited class of test problems;

4, Simulation of special problems (case studies) using the special
purpose code developed under the above task.

5. Conduct of a detailed literature search and evaluation of available
experimental data on the behavior of reinforced concrete.




o
6. Performance of model validations consisting of experimental-
theoretical comparisons of important response features.
7. Performance of a parametric study in an effort to determine the
® influence of basic material and geometric properties on damage

accumulation and failure conditions.

Under Tasks 1 and 2, a new, advanced model of reinforced concrete with a

dense unidirectional steel layout was constructed (Hegemier and Murakami, 1985;

® Murakami and Hegemier, 1986; Hegemier, Read, Valanis and Murakami, 1986). The

construction technique was based upon the use of multivariable asymptotic expansions,

a variational principle, and certain smoothing operations. The resuiting model was

cast into the form of a binary mixture which resemblies an overlay of two continua:

steel and concrete. These continua interact via body forced which are functionals of

® the relative global displacements of the continua. The theory is fully nonlinear and it

incorporates the following basic physical phenomena; rebar yielding, steel-concrete

bond degradation and slip, dowel action, and progressive concrete cracking (which is

treated explicitly). The model furnishes both global and local (to a certain degree of

accuracy) measures of deformation, stress and damage. Response characteristics such

e as stiffness degradation, ductility, hysteresis, strain hardening, and certain failure
models evolve naturally as the deformation proceeds.

The validations performed under Task 6 reveal that the theoretical framework
developed leads to a model of reinforced concrete which is capable of accurate
predictions of complex response characteristics. (Hageman, Murakami and Hegemier,

® 1986; Hegemier, Murakami and Hageman, 1984; Hegemier and Murakami, 1986;
Murakami and Hegemier, 1986.) Specifically, the validation tests performed to-date
clearly indicate that the model correctly simulates progressive concrete primary cracking
(Hegemier, Murakami and Hageman, 1984), steel-concrete bond degradation and slip

° (Hageman, Murakami and Hegemier, 1986; Hegemier, Murakami and Hageman, 1984),
steel-concrete duwc! action (Murakami and Hegemier, 1986). and certain failure modes
(Hegemier, Read, Valanis and Murakami, 1986).

Under Task 7, an extensive parametric study (Hegemier, Murakami, and Sweet,

° 1988), which is included herein as Appendix A for the convenience of the reader, was
performed using the developed advanced reinforced concrete model. The purpose of
this study was to ascertain the influence of fundamental material, interface, and

o
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geometric properties on the nonlinear response characteristics of reinforced concrete.
Of primary interest in this study was damage accumulation, overall ductility, and
failure modes/conditions. The damage mechanisms that were examined included
progressive concrete cracking, steel-concrete bond slip, and rebar yielding. Parameters
that were varied included the concrete tensile strength, the steel-concrete bond
strength, and rebar yield stress and hardening characteristics, the steel volume
fraction, and the total steel surface area. Combinations of these parameters were
discovered that allowed a concise graphical description of their affects on material
response. The latter should be of considerable value to the practicing engineer.

Finally, during the last research period the unidirectional theory noted above was
extended to include multidirectional steel layouts. The latter was selected in the form
of an orthogonal net. Details concerning the derivation and form of the resulting
theory are contained in Appendix A.

2.3 FUTURE STUDIES

It is recommended that future studies be focused upon two main areas. These
are: (1) advanced validation tests in the form of response simulations of elementary
structural elements under shear, bending, direct compression, and combinations thereof;
and (2) the development and application of smoothing operations for the crack field.
Iltem (1) is self-evident. Item (2), however, deserves comment.

Currently the model development process homogenizes the steel and concrete via
appropriate smoothing operations. These operations lead, as was noted previously, to
a model which resembles an overlay of two continua: steel and concrete. The
evolving concrete crack field, however, is not homogenized, i.e., cracks must presently
be followed explicitly. This feature of the model renders it difficult to use from a
computational standpoint. As a consequence, some form of crack field smoothing
should be explored in an effort to simplify the model computationally.




Section 3
PLAIN CONCRETE

3.1 THE PROBLEM.

The ultiirute success of the mixture theory for reinforced concrete, discussed
above, hing.> very strongly on the ability of the constitutive model of plain concrete,
used with the theory, to accurately describe the behavior of plain concrete over the
wide range of response that can be expected in practice. Any deficiencies in the plain
concrete model will surely be reflected -- and possibly enhanced -- when the model is
used in conjunction with the mixture theory to describe reinforced concrete. Clearly,
the accuracy of the mixture theory can never be greater than the accuracy of the
plain concrete model used with it. Because of this, every effort should be made to
develop an accurate model of plain concrete.

During the past ten years, considerable research has been devoted to
understanding and modeling the constitutive behavior of plain concrete. From this has
come a variety of different constitutive models for plain concrete which provide
reasonably accurate descriptions of plain concrete behavior for stress paths which
generally do not differ greatly from the standard paths followed in the usual
laboratory testing. Largely, due to the lack of available appropriate data, little proof-
testing of the models has been done to examine their predictive capabilities for
complex stress or strain paths that are expected to occur in practice. Many of the
models are limited to the stress range below failure, since they contain no provision
for treating cracking. A few of the models do, however, attempt to treat cracking
and post-cracking behavior as well. Generally speaking, however, the problems of
developing a constitutive model of plain concrete capable of realistically describing the
full spectrum of behavior from pre-cracking to cracking and finally post-cracking
response still remains basically unsolved. The goal of the present research is to
address this need.

3.2 ACCOMPLISHMENTS.

A new constitutive model of plain concrete was developed which appears to have
remarkable capabilities for predicting the nonlinear inelastic behavior of concrete for
stress states below failure (Valanis and Read, 1985; 1986). The model is formulated
on the basis of the endochronic theory of plasticity and, as such, does not require a
yield surface nor the specification of loading or unloading criteria, as in classical
plasticity. It predicts that plastic flow will occur from the onset of loading, a feature




which makes the model attractive and appropriate for describing the behavior of
concrete, which does not exhibit a well-defined yield point. Basically, the model is
isotropic (when referred to its initial state), rate-independent and satisfies the second
law of thermodynamics (Clausius-Duhem inequality). It realistically portrays the major
features of nonlinear inelastic behavior exhibited by plain concrete, including shear-
volumetric coupling, effect of hydrostatic pressure on shear response, hardening,
hysteresis and stress-path dependence.

The foregoing model was applied to an extensive set of laboratory data
generated by the University of Colorado, using a true triaxial device. The test
programs consisted of six different series of stress-controlled tests, each of which was
designed to explore a particular facet of material behavior. Altogether, the response
of concrete to over 45 complex stress paths was investigated. In all cases, the stress
paths were such that no significant macrocracking occurred during the tests.

The model was fit to a very small subset of the data, after which it was proof-
tested by driving it around over 20 complex stress paths to predict the corresponding
deformation histories. None of the data from the complex stress path tests were
used in fitting the model parameters and no optimization techniques were employed.

As shown by Valanis and Read (1985,1986), the proof-tests were remarkably
successful and revealed the powerful predictive capability of this new model. In ali
cases, the model captured the essential features of the concrete behavior and exhibited
excellent agreement with the data. For nonlinear, inelastic behavior inside the failure
surface, i.e., where significant macrocracking has not occurred, the endochronic
concrete model appears to provide the most accurate description of concrete behavior
of any of the existing concrete models.

To approach the problem of extending the basic endochronic model to account
for cracking, anisotropy and dilatancy, the constitutive behavior of a brittle elastic
solid was first considered. From this effort, there resulted a new continuous damage
theory for brittle solids (Valanis, 1985), which possessed a number of desirable
features not found in other models. In this model, damage (microcracking)
accumulates in a gradual manner from the onset of loading, provided that at least one
of the principal strains is extensional. The model is initially isotropic, but becomes




anisotropic if damage develops in specific directions. Through a clever formulation,
general anisotropy is handled through the use of second order tensors, and thus does
not require the use of fourth-order tensors, as do most such models. It appears that
the model can describe the standard modes of cracking, as well as the so-called
"splitting mode” under uniaxial compression, a mode which is beyond the scope of
most existing fracture models. Details of the model, together with a number of
applications, are given by Valanis (1985).

Recently, the above approach for describing damage and fracture of solids was
extended by Valanis (1987, 1988) to plastic-damaging solids, with the result that a
new endochronic-damaging model is now available which possesses all of the desirable
features found in the earlier (no damage) model but can now treat cracking,
anisotropy and dilatancy. The key concept behind the theory is a mapping which
transforms the current, damaged and generally anisotropic state of a material into an
isotropic, undamaged state. The model describes both stiffness degradation and yield
limit degradation due to developing damage, as well as dilatancy, and contains, as
special cases, several models that are noteworthy, including the classical elastic-
fracturing model. The model has been successfully appl‘igd to recent data on the
response of plain concrete to simple tension (Read, 1988) . For further details of
the model and its application to plain concrete, see Valanis and Read (1989).

In view of the Air Force's interest in shock loading of defense structures, and
with the goal of eventually introducing strain-rate dependence into the endochronic
concrete model, a comprehensive review of strain rate effects in plain concrete was
conducted (Read, 1985; Hegemier and Read, 1985). In particular, we sought an
answer to the following question: Does the existing data on strain rate effects in
plain concrete realistically reflect the true rate dependence of this material, or are the
inferred rate effects the result of spurious system effects, inhomogeneous deformation
or poor methods of data interpretation? In view of the importance of strategic
structure response to this study, the review was focussed on the strain rate range
from 10! to 102 sec’!, where almost all of the data comes from drop hammer
devices. From the review. it was concluded that considerable caution should be
exercised in using such data to develop rate-dependent constitutive models. The
responses of test specimens in such devices are complicated by a number of factors,
including inhomogeneous deformation, non-ideal boundary conditions and complex
stress-wave fields. For further details, the works by Read (1985) and Hegemier and
Read (1986) should be consulted.

k%

See Appendix B.




Concrete, as well as rocks and dense soils, when compressed at constant axial
strain rate under conditions of either uniaxial stress or triaxial compression, exhibit a
phenomenon called "strain softening”. Materials which exhibit such softening are
characterized by a constitutive response in the axial direction in which the stress rises
monotonically with strain to a peak, and then decreases with further increases in
strain.

In the past, strain softening has been generally viewed as a true continuum
material property and routinely incorporated into constitutive models. As a result, the
literature abounds with advanced, complex constitutive models for materials such as
concrete, rock and soil which are designed to simulate strain softening. Recently,
however, both numerical and analytical difficulties have surfaced concerning the
solution of certain wave propagation problems in strain softening materials. As
examples, it is noted that strain softening can lead to mesh dependence from the
numerical viewpoint and loss of hyperbolicity from the analytical standpoint.

In view of these difficulties, and because plain concrete is a strain softening
material (at least for pressures below the brittle-ductile transition), an extensive study
of strain softening, including experimental, theoretical and numerical issues, was
conducted. The results from this study are given in the works by Read and
Hegemier (1984), Hegemier and Read (1984), and Hegemier and Read (1985). In
essence, it was found that without exception the initiation of strain softening
corresponds to the transition of the test specimen from a continuum to a structure
and/or to significant geometrical changes in the specimen’s minimum cross-sectional
area. It was concluded that strain softening, as inferred in the usual manner from
conventional laboratory tests, is not a material property and therefore should not be
incorporated into the usual (local} types of constitutive equations. This conclusion
has been reaffirmed by subsequent investigators.

During the present reporting period, there has been considerable activity directed
toward developing and applying non-local models of strain softening. Virtually all of
this activity has focussed on the case of softening under tension, and a measure of
success has been achieved. The more difficult case of softening in compression has
received little attention and continues to be an unresolved problem. Further research
is needed to develop a general approach which can deal with softening under both
tensile and compressive loading conditions.




Finally, the types of experimental data normally used to develop constitutive
models for plain concrete were critically assessed as part of this study (Hegemier and
Read, 1985). Various issues pertaining to strain softening, strain hardening, failure
states, failure modes and strain rate effects were considered. Particular attention was
given to the effects of different boundary conditions and different test devices on the
resulting data. Also, the manner of defining failure was explored. It was found that
failure modes are strongly influenced by a number of factors, perhaps the most
important being the test boundary conditions. Considerable scatter in data was found
with respect to failure modes, especially at low confining pressures.

3.3 FUTURE STUDIES.

In order to complete the research undertaken in this task, and to accomplish the
ultimate goal of developing a constitutive model of plain concrete that is capable of
describing the response of this material to shock loading, including damage and
fracture, the following tasks are recommended in a future effort:

. in view of the very encouraging progress made in this study toward
developing a theory for the plasticity and fracture of concrete,
further effort should be undertaken to explore and validate the
theory under more general loading conditions, such as uniaxial
compression and triaxial compression. These cases involve cracking
patterns that are considerably more complex than those which occur
under simple tension, and thus should provide insight for further
model development.

. The success of the new endochronic plastic-fracturing model in
describing real physical phenomena depends strongly on the ability
of the damage evolution equation to reflect the underlying
micromechanical damage processes. Additional effort, therefore,
needs to be devoted to setting the damage evolution equation on a
firm micromechanical foundation.

. Further investigate the still unresolved question of strain-rate
dependence of concrete, with particular attention on the critical
assessment of experimental techniques developed by the defense
community during the past several years.

10




If the issue of rate-dependence can be resolved, introduce strain-rate
effects into the endochronic plastic fracturing model. Validate
model against appropriate strain-rate data not used in calibrating
the model.

While considerable progress has been made recently in under-
standing "strain softening”, there are still many outstanding
questions. Most importantly, there is still no generally accepted
method for taking strain softening into account under general
loading conditions. This area is in need of immediate attention.

11




Section 4
PUBLICATIONS

The publications which resulted from the research conducted under this contract
are listed below.

Hageman, L. J., H. Murakami and G. A. Hegemier (1986), "On Simulating Steel-
Concrete Interaction in Reinforced Concrete. Part lI: Validation Studies,”
Mechanics of Materials, Vol. 5, 181.

Hegemier, G. A., and H. E. Read (1984}, "Strain Softening” (Discussion), Theoretical
Foundations for Large-Scale Computations for Nonlinear Material Behavior, edited
by S. Nemat-Nasser, R. J. Asaro and G. A. Hegemier, Martinus Nijhoff, Publ.

Hegemier, G. A., H. Murakami and L. J. Hageman (1984), "On Tension Stiffening in
Reinforced Concrete,” Mechanics of Materials, Vol. 4(2), 161,

Hegemier, G. A., and H. E. Read (1985), "On Deformation and Failure of Brittle
Solids: Some Outstanding Issues,” Mechanics of Materials, Vol. 4(3), 215.

Hegemier, G. A., and H. Murakami (1985), "A Nonlinear Theory for Reinforced
Concrete,” Proc. Second Symposium on the Interaction of Non-Nuclear Munitions
with Structures. Panama City, FLA.

Hegemier, G. A., and H. Murakami (1986), "On Simulating the Nonlinear Planar
Hysteretic Response of Reinforced Concrete and Concrete Masonry,” Third
ASCE/EMD Specialty Conference on Dynamics of Structures, UCLA, Los Angeles,
California.

Hegemier, G. A., H. Murakami, and K. Sweet, (1988), "Influence of Steel-Concrete
Bond Characteristics on Stiffness Degradation, Ductility, and Failure conditions in
Reinforced Concrete,” In preparation.

Murakami, H., and G. A. Hegemier (1986}, "On Simulating Steel-Concrete Interaction
in Reinforced Concrete. Part I: Theoretical Development,” Mechanics of
Materials, Vol. 5, 171.

Murakami, H., and G. A. Hegemier (1986), "A Nonlinear Dowel Action Model,”
submitted to /ntl. J. Solids and Structures.

12




Read, H. E. and G. A. Hegemier (1984}, "Strain Softening of Rock, Soil and
Concrete,” Mechanics of Materials, Vol. 3, 271.

Read, H. E. (1985), "Strain-Rate Effects in Concrete: A Review of Experimental Data
and Methods,” S-CUBED, La Jolla, Calif. Report No. SSS-R-85-6081.

Read, H. E., {1988). "Endochronic Plastic-Fracturing Theory with Application to Plain
Concrete,” S-CUBED La Jolla, CA ., Technical Report SSS-R-89-9848, December.

Valanis, K. C., (1985), "A Theory of Fracture for Brittle Solids,” S-CUBED, La Jolla,
Calif. Internal Report.

Valanis, K. C., and H. E. Read (1986), "An Endochronic Plasticity Theory for
Concrete,” Mechanics of Materials, Vol. 5, 2717.

Valanis, K. C., (1987), ENDOCHRONICS, INC., Private Communication.

Valanis, K. C., (1988), "An Internal Variable Theory of Plasticity and Fracture,”
ENDOCHRONICS, INC., Vancouver, WA., Private Communication, February.

Valanis, K. C., and H. E. Read (1989), "An Internal Variable Theory for Plastic-
Fracturing Solids,” to be submitted for publication.
Annual Reports

Hegemier, G. A., H. E. Read, K. C. Valanis and H. Murakami, (1985) "Development
of Advanced Constitutive Models for Plain and Reinforced Concretes,” S-CUBED,
La Jolla, CA., 1st Annual Report, SSS-R-85-7150, April.

Hegemier, G. A., H. E. Read, K. C. Valanis and H. Murakami, (1986}, "Development
of Advanced Constitutive Models for Plain and Reinforced Concretes,” S-CUBED,
La Jolla, CA., 2nd Annual Report, SSS-R-86-7914, April.

Hegemier, G. A., H. E. Read, K. C. Valanis and H. Murakami, (1987), "Development

of Advanced Constitutive Models for Plain and Reinforced Concretes,” S-CUBED,
La Jolla, CA., 3rd Annual Report, SSS-R-87-8454, March.

13




APPENDIX A
SSS-DFR-89-10119

ON MIXTURE MODELS WITH
MICROSTRUCTURE FOR
REINFORCED CONCRETE

G. A. Hegemier
H. Murakami
K. Sweet
Technical Report

Prepared for

Air Force Office of Scientific Research
Bolling AFB, D.C. 20332

AFOSR Contract No. F49620-84-C-0029

December 31, 19088




ABSTRACT

This report describes an effort to develop continuum mixture models with
microstructure for reinforced concrete with unidirectional or bidirectional steel
reinforcement layouts. In addition to model construction, analytical and numerical
examples are presented in an effort to demonstrate the capability of the theory to
simulate stiffness degradation., ductility, and failure conditions. The theory
incorporates progressive concrete cracking, steel-concrete bond slip, and yielding of the
steel.
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SECTION 1
INTRODUCTION

This report deals with microstructural mixture modeis for reinforced concrete
systems with unidirectional and bidirectional steel layouts. Sections 2 - 7 concern the
development of models for 3D reinforced concrete elements and 2D reinforced concrete
panels -- all with unidirectional rebar layouts. These models are examined from the
standpoint of simulation capability in Sections 8-10. Included here are discussions of
stiffness degradation, ductility, and failure conditions. In Section 11, the modeling
effort is expanded to include rebar layouts which are bidirectional.

The models developed incorporate progressive concrete cracking, steel-concrete
bond slip, and yielding of the reinforcement. The modeis are nonphenomenological in
that all model parameters are defined once the properties and geometries of the
material components are defined.
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Section 2
FORMULATION OF THE LINEAR PROBLEM

Consider a reinforced concrete element with a uniaxial, periodic steel layout. At
time t in the loading process, let this element consist of a collection of intact
subelements. Let V and 8V, respectively, denote the volume and boundary surface of
a typical sub-element. Thus, if crack surfaces penetrate the element, they are
confined to V.

For reierence, let rectangular Cartesian material coordinates ;1. ;2. x, be selected
with x, in the axial direction; Figure 2.1. For notational convenience, ( 30. a = 1,2,
will denote quantities associated with material a with a = 1 denoting steel and
a = 2 denoting concrete. In addition, the notations (). = a(‘)/aii will be employed.
The usual Cartesian indicial notation will be adopted 'in which Latin indices range
from 1 to 3, and repeated indices imply the summation convention unless otherwise
stated. Quantities of the form () and ( ) denote dimensional and nondimensional
variables, respectively.

Under the premise of small deformations and linear elastic, isotropic component
response, the basic governing relations for the components and the component
interfaces are:

(a) Equilibrium equations

;.(‘.1)- + ?'(a) =0 on V(a) (2.1)
Ju,J '

where ;'i denotes the stress tensor, 'f'.(a) represents a body force per unit volume,
and vl s the volume occupied by material a;

(b) Constitutive relations

ZON OPNOR CRORETO 2.2

where -)‘-(a). ;(a) are Lamé’s constants, 6

is the Kronecker delta, and eij is the
infinitesimal strain tensor;

ij
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Reinforced concrete subelement.

Figure 2.1.
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(c) Strain-displacement relations

o+ 5 5 e 7O =

(d) Interface continuity conditions

M - 5@ s, @ (7@, 35 (2.4)
} ] |J J Jl _]

where 8 denotes the interface bgtween the two constituents and ui(l) is the unit

outward normal to material 1 on 8, which satisfies V{l = 0;

(e) Appropriate boundary conditions on av.

Conditions (a) - (e) define a well-posed boundary value problem. However, a
direct solution of this problem for the stress and deformation fields on an element
domain V is rendered virtually intractable for most cases by the many interfaces 3
and the three-dimensional aspect of the problem. A primary objective of the work to
follow is to alleviate this difficulty by a process of homogenization or smoothing of
the original heterogeneous material in V.
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Section 3

HOMOGENIZATION PROCEDURE

3.1 SCALING.

The homogenization process begins with a simple scaling of both dependent and
independent variables. This step is facilitated by the introduction of the following
nondimensional quantities:

x.=;/7\- ,

W@ - 5@
MONIC
oy = By

1@ 7@

(3.1)
@ *
om@ = En@E,,

where A denotes a reference macro length and E is a reference composite elastic
modulus. Under (3.1), equations (2.1) - (2.4) bec!mze

(a) . f(a) =0 on v(a) (3.2)
J':J
ai(_?) = )‘(a)aijelsﬁ) + 2pei(?) on V(a), (3.3)
l(:') = %[ .(a). . uJ(?)} on V(a) (3.4)
D D D0 O, oy 6.9

where V(@ = \—l(a)/lt3 and 3 is again the component interface.
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3.2 MICROCOORDINATES.

It is expected that the stress and deformation fields will vary significantly with
respect to two basic length scales: (1) a "macro”™ length typical of the body size or
loading condition; and (2) a "micro” length typical of a "cell” planar dimensions as
depicted in Figure 2.1. These macro and micro scales will be associated with the
variables & and A, respectively. Further, it is expected that these scales will differ by
at least one order of magnitude in most cases. This suggests the use of
multivariable asymptotic techniques, Hegemier, et al/ (1979). This approach
commences by introducing new independent variables according

x. = ¢ l(e)x., #(e) +0ase+0 ,
7 Y (3.6a)
§7 = ¥(e)x,, ¥(e) *1as e+ 0,
where 7 = 2,3 and
e = AR . (3.6b)
For the present analysis, it will suffice to set
ple) =€.9(e) =1 . (3.7)

Thus, all field variables f(x,t) are now functions of the "microcoordinates” x; as well
as the "macrocoordinates” Xy 2 Xy i.e.,

f(xi) = F[x.

l;x;;e) . (3.8)

Spatial derivatives of a function f(xi) then take the form

fo=F . selF (3.9)

where () = 8( )/8x, and (), = 8( )/0x; with (), = 3()/dx* = 0. For

]
notational convenience, the functions f and F will boi*\ be written as f in the
following.
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3.3 SYNTHESIZED FIELD EQUATIONS.

The operations (3.8) and (3.9), when applied to all field variables, lead to the
following synthesized governing field equations in nondimensional form:

1 . -
a}??j . a§?3j 5@ -0 (3.10)
af?) = x(“)aijeéﬁ) . 2pe§?) , (3.11)
1 1
ef?) =3 {[uf?} + u}?%] + E[u§?3*+ u}?%*]}, | (3.12)
u.(l) = u.(2) a.q)u.(l) = a.(".z)u.(l) = TT on @ (3.13)
i iy ) jiv ) i )

3.4 LOCAL PERIODICITY CONDITION.

An important premise, called the local periodicity condition, is now introduced.
This condition consists of the assumption that local periodicity in the microvariables
x*, 7= 2,3, may be invoked for all field variables. This premise allows one to
ar?alyze a single cell in an effort to determine the distribution of any field variable
with respect to the coordinates x*. A typical such cell is illustrated in Figure 3.1.
The local periodicity premise is nggested by the Floquet Theory associated with
linear differential equations with periodic coefficients, the set of relations (3.10) -
(3.12) can be reformulated as such a set of differential equations.

The local periodicity condition implies that all field variables f(xk;x,’;) satisfy
f(xk; x;,xg;e] = f[xk; 'XE,’X;;C] (3.14)

where (;’(;9;) and (-X*.-x*) denote reflected points on the boundary 80 of a typical
cell with area i = Al UA&).
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Now, on the boundary 3fl, it is evident that ng)(%.’\‘;) = -ng)(-/x\;."’x\;). Thus,
x; - periodicity implies that

[ f[xk;x;;e]U§2)d(aﬂ) =0 (3.15)
aa

for any field variable f. The property (3.15) will be useful later.
3.5 WEIGHTED RESIDUAL PROCEDURE.

In this subsection, a weighted residual procedure is introduced. This procedure
will be subsequently used to eliminate the microcoordinates x*{y = 2,3) from all field
variables through an averaging operation, and to establish agpropriate field equations
for the resulting averaged fields.

To begin, let ¥ denote the space of all H -functions f(x :x*) on V with respect
to x (k = 1-3) and on 0 with respect to x7 (7 = 2.3) that are x* -periodic Jaccording
to subsection 3.4. Any function u. €9y with u, = Gi on 3V . where u, is the
specified displacement, will be called an admissible trial displacement. Any function
6ui € ¢ with 6ui =0 on 6Vu will be called a weighting fugction or are admissible
variation (of u.).  In addition, let § denote the space of all L"-functions h(xk;x;) on V
with respect to x (k = 1-3) and on 0 with respect to x} (7 = 2.3) that ‘are x>-
periodic. Any function 0. € § with o.v. = ¥ on 6V, Where 'fi is the speciﬁzd
traction, will be called an admissible trial Stress. Any function 8o.. € ; with do. = )
on 6V. will be called a weighting function or an admissible variation (of o..). In the
above, it has been tacitly assumed for convenience that the boundary data on &V is
of the non-mixed type, i.e., that u, is specified on O‘Vu while Yi is specified on GVT
with 6V = §V VdV_ and 6V nev. =0 (generalization to the mixed case does not

represent a sigr?iﬁcant problem'j.
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® Next, consider the weighted residual R defined by

((([_2 (f

Rz [l E 6ui(a)[aji'j .1 AR fi](a)dA(a) dv

JV4 a=1 /J A(a)

(((( 2 re

J aai(}z)[eij(...) - eij] (a)dA(a) dv

JU { a=1 JA(G)
(

f 2
. { Lors(o® - el ([ ”
o /3 a=l My

(3.16)

- a..u.] (2}, (@) gp (@) | s
] i

—_—

¢
()

2
. ”J z { Ly - ajiuj](a)dui(a)ds* v J } %[-v}?’v}"’]aui“”d(an) o
o=1 3

on

where dV = dx, dx. dx. ; dA® - dx*dx’;: ds* is a differential element of 8 = aA(l):
dS is a differential element of 3V; anz denotes the outer cell boundary; T* = a!”u!l)
on d; for a given trial displacement u.'?, ei.(‘x is computed according to (3.12); ajnd
the notation ei.(‘z (e*) denotes the inverse of (3.11) which is to be computed given a
trial stress aij' i.e.,

1+ 0@ @) @ (@s (3.17a)

@ (200 = s
5 ) 2@ % T @ ke O

where

£@ - s®@ . 251) (")' NOR __L(f)__) _ (3.17b)
O+ 2p) 2(x + p)(@

In (3.16), the integrations with respect to the macrocoordinates are carried out over
the entire domain V while those with respect to the microcoordinates x‘f, are
performed over a typical cell.

Now, if R =0 is satisfied for: (1) all admissible 6ul® which are arbitrary over V

and A, and on 8V, and Ale); (2) all admissible 60“( ) which are arbitrary over V
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and Al%), and on 8V and Al®); and (3) all admissible ¥, which are arbitrary over
V and 3, then the first five integrals must vanish independently and it is evident that
weak solutions of the local field equations have been generated that satisfy the
equilibrium equations (3.10) (first integral), the constitutive relations (3.11) (second
integral), the interface displacement continuity (3.13) (third integral), the specified
traction on 3V (fourth integral), and the traction continuity on 3 (fifth integral). The
kinematic condition (3.12) is satisfied identically since e, is computed from u, v:a
(3.12). The last (sixth) integral vanishes if the stresses are required to be in a §-
solution set; otherwise the vanishing of this integral imposes the x*-periodicity
condition on the transverse stresses o (i.j # 1) (note that V}z £ 0" on the cell
boundary 00).

If R = 0 is satisfied for all admissible cSui in a subspace of ¢, and for all
admissible 60. in a subspace of ¢, then the field equations (3.10)- (3.13) are satisfied
in a weighteJ residual (approximate) sense.

From (3.16) with R = 0, Gauss’ Theorem, and the x*-periodicity condition, one
obtains !

2
[o (")ae(") + 6o l(‘J’) f‘J‘) (eo0) | axgant
a=1 A(a)
. [T;’[&Sf) - ofD] 4 ot [u{® - ui(l)]]ds* dx, dx,dx,
3

2 |

- g fi(a)dui(a)dxadxg dx, dxydxg
= @
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2

. E ¥ (@ 50D ansaxslas |, (3.18)
= @
T
where
_ 1 1
5eij = E{Gui,j + 6uj,i . e[aui,j‘* 6“_],7‘}} . (3.19)

Equation (3.18) is similar to Reissner’s mixed variational principle (1984,1986) in
which variations of the stresses are considered along with variations of the
displacements. The terms of (3.17) involving Gai.a and 6T are constraint conditions
that reflect satisfaction of the material consfitutive relations and the interface
displacement continuity conditions, respectively. Consequently, (3.18) can be envisaged
as the principle of virtual work for the synthesized fields with constraint conditions;
here 50i. and 6T* play the role of Lagrangian multipliers. In what follows, only

variations in the transverse stresses ai](i.j#l.l) will be considered, i.e., 60, = 0.
3.6 TRIAL FUNCTIONS.

As indicated in the previous subsection, the weighted residual procedure (3.18)
will be subsequently employed to eliminate the x*-dependence (i.e., the dependence on
the microcoordinates) from all field variables, anz to establish field equations for the
x*-averaged (i.e., cell-averaged) fields. To accomplish this task, however, appropriate
trial functions u'!® e ¥ and ci.a € ; must be postulated or constructed. In
particular, it will be necessary to exhibit an explicit x*-dependence of all displacements
ui‘z and the transverse stress components aij(a (i.j #71.1).

The required x*-dependence of the displacements and the transverse stresses can
be obtained by applilation of an asymptotic procedure developed by Hegemier (1974)
and Murakami, Maewal and Hegemier (1981) (see Murakami and Hegemier (1986) for
application to a similar problem). This procedure is as follows: The premise that
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the ratio of micro-to-macrodimensions is small, ¢ << 1, and the form of the
synthesized equations (3.10) - (3.17). suggest an expansion of the dependent variables
in the asymptotic series

(a) (a) .
{u, ”aj} [“k‘“?“] =:§E:::en{ui(n)’aij(n)} ([ *eixy) - (3.20)

n=0

If (3.20) is substituted into (3.10) - (3.13), and the coefficients of different
powers of € are equated to zero in the usual manner, a sequence of boundary value
problems (called microboundary value problems or MBVP’s) are defined on the cell.
In general, solution of this sequence is difficult. However, for those cases where a
circular cylinder approximation of the cell boundary 60 is appropriate (i.e., where the
cell aspect ratio is approximately unity), consideration of this sequence to Of{e¢)
motivates the following form for the trial fields:

(a) Displacement trial functions

u.(a) (xk;x;;e) = Ui(a) [xk] + Egi (xk)g(a) (r)cosé

+ € §i[xk)9(a)(r)sin9 + 0(62], (3.21a)
where
5,5, (3.21b)
9(1) (r) = n'(.l) ’ 9(2) (r) = n(;) [' T« %] ’ (3.21¢)
xa = r cosf, xg =r sinf (3.214d)

and where n{® denote volume fractions, i.e., n(® — A(a)/A where A = AU — ¢
is the total cell area.

(b) Transverse stress trial functions
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022 Too 5 cos26
ke g) = _a2 (2)
o33| (ki%yi€) = |Tas| () * T2 ) b2z (M) |cos%
%23 T23 0
cos2f] sin26
+ tgg)(xk] -cos20| + tég)(xk] sin26
sin204 0
[3cosf [ sind)
v €0, (r)[cost | + £ Py(x 19\ () |3sind| + 0(e?) ;  (3.22a)
[sind | cosf)
(a) (a) e o
931 rT31 sin2f
ot = a2 |.(2)
(Xki%y3€) = () * 2 142" (%)
912 712 {cos29J
cos26) sind
eP
2 1 2
v 683 () v 5t ()@ ) « oled). (3.22b)
-sin26] cosf
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SECTION 4
DEVELOPMENT OF 3D MIXTURE MODEL FOR R/C
Following substitution of the trial fields (3.21) and (3.22) into the variational
principle (3.18), integration over x*, and appropriate integrations by parts, one obtains

the Euler-Lagrange equations of the variational principle in the form:

(a) Mixture Equilibrium

"(a)oj(‘imj . (_1)0*1 Pi . n(a)fi(a) =0 (i =1-3) (4.1a)
where
”i(‘jm) = % ai(?)dxadxg , (4.1b)
A(a)
P, =lig s = L aj(})uj(‘) ds* . (4.1¢c)
0 0

In (4.1a3), 02 is a cell-averaged stress tensor and P. represents an effective
interaction body force due to the transfer of the stress vector across the interface d.
For the circular cylinders approximation, A = .

(b) Mixture Equilibrium - stress moments

1 2 1 2 2
0523) - 0523) - ___2n(1) [t§2) . 2t§3)] =0 , (4.23)
1 2 1 2 2
Ugsa) - 0533) + '2';-(-17[ t§2) - 2t§3)] =0, (4.2b)
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(la) _ aéga) ;__(_1_)_ g) =0 , (4.2¢)
(la) ) agfa) (1) tgf) =0, (4.2d)
(la) . al(ga) (1)*‘1(?.) =0 , (4.2e)

(c) Constitutive Relations - transverse stress averages

12

P -

(a) a) _ a+l
2 “ols o2+ o)+ (B 0 B g s

;‘2 1,1 n(a)

i R R s B o T R A IR
_TET ”éga) = Ué K Uga% + 2 i‘?%;:i § (4.3c)
#(a) é:a) = U( ) Ufa% 1:%%;:1 § (4.3d)
(a) %ga) = 5,% * U2,1 1:%%;:1 g (4.3e)

In the derivation of (4.3), use was made of the equality a]( L 'rij(a) for (i.j) #
(1.1). In addition, the parameter \ above is defined by

NEdp(h o+ p). (4.3f)
(d) Constitutive Relations - transverse stress moments

L @)
t(2) .- il_z§§l__ [3 .3 ] (4.4a)

A-20




SSS-DFR-89-10119

(2)
2 3
t§3) = - ﬁziy [32 + §3J ) (4.4b)
L2 _ ufl[g 3) - 200+ @ 3 »
23 ~ 7 (2 2% 77 (2 2 (4.4c)
(2)
2
2 - - :—(57 ) (4.4d)
2
2
6,{? = Ne] 3, . (4.4¢)
(e) Constitutive Relations - Interaction terms
[ (2 _ (1)]
u U
P, = fyyt—— | 4.5
1 p(l) 62 (4.52)
(2 _ y@
V) -U
P, = p(z)[_2___65__2’_l ' (4.5b)
2 _ ym
U - U
P3 ="’(3)[ 2 2 2 ] ’ (4.5¢)
where
2
Py = 3 E (@7 @) (4.5d)
a=
2
(a) ()
-1 1 MO0+ 34)
p =f = ) (4.5e)
(2) (3) Za:;: 8£a) (O + ) (a)
and where
M _1 @l (,, @, 2, 1)
AR B 4n(2)[2 n Loyen n ] . (4.5f)
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(f) Constitutive Relations - Axial stresses

o1« o2 - g R - ) T - e27) o

(g) Boundary Conditions

The appropriate boundary conditions for (4.1a) are

either 6Ui(a) =0 or ‘l‘i(ap) = n(a)oj(?a)uj (4.7a)

on 6V, where

- 1
l(i(ap) = ‘I‘idx‘édxg =3 ¥idx*dx* . (4.7b)

(a) 2@

1
A

The relations (4.1a), (4.2a-e), (4.3a-e), (4.4a-e), (4.5a-c), (4.6). and (4.7a)
constitute a complete continuum mixture model for the case of fully three-dimensional
fields.
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PY SECTION 5

DEVELOPMENT OF 2D MIXTURE MODEL FOR R/C PANELS

In this section, the 3D mixture model of Section 4 is specialized for the case of
(] plane stress. The resulting equations constitute a model for the in-plane deformation
of reinforced concrete panels. The (material) reference coordinate system associated

with such a panel is depicted in Figure 5.1.

5.1 PLANE STRESS CONSTRAINTS.

o
The following constraints are deemed to be appropriate for the planar
deformation of a reinforced concrete panel:
(aa) _ (aa) _ (aa) _
° 033 @ =0z ' =03 " = 0. (5.1a)
()z=o0 , ui® =0 . (5.1b)
Equations (5.1a) and (4.2b-d) furnish
@
(2) _ (2 -
t3]) =t3y =0, (5.2a)
(2) - (@
tyy = 2b53’ . (5.2b)
®
The relations (5.2), when combined with (4.4) yield
8 -8 =0 , (5.3a)
PY 1 2 .
= (Ao s
L= 3,;] s (5.3b)
(1a) _ _(2a) _ .(2), (1)
LP¥ Opop ' = oo /n (5.3¢)
[
5.2 CONSTITUTIVE RELATIONS.
Under the constraint (5.1a), and upon noting that
L
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Figure 5.1. Material coordinate system.
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4s( + 4) _ _E Dy vE E (5.4)

Nep S 2Nt 20 ET3e)

one obtains from (4.3a), (4.3e), and (4.6)

a+l

Uéga) - [.1 _f-i Vz} (2) [Ué"% R _(;_a)_ §2 . u(")uf"‘}] ) (5.5a)

(a) a+l

E -1
o8 = i) o) - o) - 178 e
(a) a+l

E -1

A+ [ b - S €5

The expressions (5.5a-c) can be written entirely in terms of u!{® and Uga) as follows.
First, the quantity & can be determined in terms of U;a) and] ule by substitution of
(5.5a,c) into (5.3c) and use of (4.4a) and (5.3b); the result of this operation is

oo (252 AR ()
[T (5.7
where
7z n(i) [1 f Vz](l) . ;%57 [;_%_;5](2) RONCIA ,25§§;)(3 @) ™

Next, substitution of (5.5b) and (4.4d) into (4.2e) yields

7 (1) 7 (2)
i it MU RU R RS o e B CWYRIT I NCED

g

1
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where

a . g® C_ED( . W)
1) = 2,0 L, D) 7 2,0, . @)

(5.8b)

Finally, upon substitution of (5.7a) and (5.8a) into (5.5a-c), one obtains the desired
constitutive relations; these can be expressed in matrix form as

{0} = [C){e} (5.92)
where

@y = (0,09 (@) (), 08 @,(2) (W) (@), ET,

= 1 2 1 2 1 1 2 291\7T
@8 B 0% b D o2+ oS, oY - 3T

[€] = [Ckl] , k,1 =1 to 6 with CkI = CIk and
Ckl =0fork=5,6and | =1 to 4; (5.9b)
and where
cn=[gn-7;n%uﬂﬁn, \p = @M@ L, ®,@¢,
2
)y = [n(z) ) D(2)]D(2)  Cp = [r3 - 7 D)),
Cp = PW0@, W ¢ 2 pp@,@ @
G = (/@ - p@p@,@ | ¢ o pWp@
() 1
1 1 2) (2 2

°a="(“(ﬂl'ngﬁﬁ}Cw="(h(ﬂl'j%“(q'

2
%6=”9“n“ﬁ'Cw="ahmﬂl'nﬂﬁﬁ]' (5.5¢)
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In the above,

(a) - E (a) E
D E —, - ————tt 5.9d
1 - U(a)z g 2(1 + ”(Q)J ( )

In addition to the material constitutive equations (5.9a), the interaction

" constitutive relations” are, from (4.5a,b):

(2 _ 4
[U2 : ] (5.10a)

» Py = Py T 2

o - o)

L=l — 2

where p(l)'ﬂ(Z) can be expressed in terms of E,v by

2 2
(a) (a) (a) (@) (a)
-1 h'% (1 + 1) -1 W0+ )3 - 4
e D £@) "ur'E; @ :
a=
(5.10b)

a=1

5.3 EQUILIBRIUM EQUATIONS.
The appropriate equilibrium equations for the 2D model can be obtained directly

from (4.1a) together with the plane stress condition (5.1a); this yields
(5.11)

(@), (aa) , (_pya+lp , (@)c(0)_
ntWagy ¢ (DR, « BB 0

where f,7=1,2 .

5.4 BOUNDARY CONDITIONS.
The theory is completed by specification of the boundary conditions on 3V; these

are, from (4.7) given by
(5.12)

either 6Uéa) =0 or n(a)op,(,aa)u,, = féap)

where, again, f.1 = 1,2.
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5.5 PRINCIPLE OF VIRTUAL WORK.

For purposes of numerical computations, it is instructive to note the form of the
principle of virtual work for the plane stress problem under discussion. This form is

[{0} 6{e} + (F} 6{U}]dV = || {T} 6{U}dS (5.13)

Vr

where

@ = (902 o 1)

Frz{-p e a®e) p L DD WD p L 2@ DT
_ [#(1p) %(2 1 2o\ T
ay = {y; P) y(lp) ’ y(zp) ’ q(zp)}

and where {e}, {0} are given by (5.9b).
5.6 SUMMARY OF BASIC EQUATIONS IN MATERIAL COORDINATES.

The basic equations that govern the linear planar response of a R/C panel with
a unidirectional steel layout are summarized below. Use of these equations require
that the reference coordinates be material coordinates, i.e., that the xl-axis be aligned

with the steel as depicted in Figure 5.1.

(a) Equilibrium Equations

aégfg St S X (5.14)
where a = 1,2; 6,7 =1,2.
(b) Material Constitutive Relations

2

s
of3P) = @@ y(® (@ (yl®) o (-yet ;?ET ,
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2
S
o {3P) = (@), () [u{‘f?z Ul (-n"*l—l]

NO)
s2
o53P)= n@p (M) |y(®) o (1)2! n(i) - Byl (5.15)
(c) [Interactive constitutive Relations for Pg
5= Py U - Y5 | (5.16)
where § = 1,2; no sum on 4.
(d) Interaction Constitutive Relations for Sg
2 2 2 1 1
Sp = ! )[Uz,z * "U1,1]( ) )[”2,2 * ”U1,1]( ’,
s? - @ [01’2 . Uz,x] @) _ e, (1) [U1,2 . U2,1] @) (5.17)
(e) Parameters
0@ Je@)( ., 2@ @ @y, @
2 2
) = 3 E (h(@ @) Pz = E h(®) (3 - a) @ g,(@)
a=1 a=1
W_1 @1 (,, @, 2 1)
bW =1, n -4n(2)[2 . Ty ]
a0 p@ L@ .
1 n(l) n(2) n(2) [n(l) [3 - 41/(2))] '
. 1 L@ (., ,0
1 _u _ B " jlen
T E M ® [ - ] (5.18)
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Partial Stresses, body forces

0g3P) = n(Boft) £{2P) = n(@¢f0) (5.19)

where @ = 1,2; 6,7 = 1,2

Alternate Form of Material Constitutive Relations

{o} = [C){e} (5.20)
where {0}, {e}, and [C] are defined by (5.9).

BASIC EQUATIONS IN GENERAL COORDINATES.

For some applications, it may prove convenient to utilize reference coordinates

which are rotated with respect to the material coordinates as shown in Figure 5.2.
The basic equations can be rewritten when referenced to such coordinates as follows:

Let XyeXy denote the material coordinates and let 91,5(\2 be defined according to
X) = %y cosd - L sing

Xy = X sing + x"é cosd , (5.21)
X3 = X3

Then, it is easily demonstrated that the stress, strain components in the new
coordinate system are given by

= c052¢ $1p * sin? ¢ Spp - 2 sing cos¢ ;12 )

[7]
[y
-t

I

Sgo = sin ¢ Sy, * c032¢s22 + 2 sing cos¢ ;12

(cos2¢ - sin2¢] ;12 + sing cos¢[;n - ;22] ) (5.22a)

(7]
[y
[ ]

0
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where Sy6 represents (a”)(“) or (e75)(a): the latter are given by

26{) = u{%) .l 61212 (5.22b)

In addition, it can be shown that

<t
]

t cos$ - t, sing ,

(5.22¢)
t

0 tl sing + t, cos$ ,

where t,7 represents S;, U,(ra). f,(’a). or P T

Substitution of (5.22a) - (5.22c) into the basic relations of subsection 5.6, and
with use of (5.21) to evaluate derivatives with respect to X X, in terms of derivatives

with respect to Ql.Qz. one obtains

(a) Equilibrium Equations

"53’3 . (1)1 Ps + fg"p) =0 (5.23)

where @ = 1,2 and 6,7 = 1,2

(b) Material Constitutive Relations

{0} = [C}{e} (5.24a)

where

€ =mem ; (5.24b)
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cos’p 0 sin2¢ 0 2singcoss 0
0 c052¢ 0 sin2¢ 0 2singcos¢
sin2¢ 0 c052¢ 0 -2singcosé 0
M = 0 sin2¢ 0 cos2¢ 0 -2singcos¢
-singcos¢ 0 singcos¢ o cosz¢-sin2¢ 0
0 -singcos¢ 0 singcosé 0 c052¢-sin2¢.
(5.24c)
The 6x6 matrix [C] is defined by (5.9b.c).
Interaction Terms
5 2 (12 (1 2 [n(2 (1
Py = 1y (002 - 0D) + By, [uf? - o)
(5.25a)
5 2 [(2 (1 2 (2 (1
Po = (U7 - UV) « [0 - UV)
where
ﬁll = p(l)cos2¢ + e2)sin2 ¢,
;’22 = ﬂ(z)c°52¢ + p(l)s“‘2¢ ’
Pyy = - 521 = (B - Pray)sinbeoss. (5.25b)
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SECTION 6
MODIFICATION FOR INTERFACE SLIP

The 2D and 3D models of the previous sections are subject to the restriction of
a perfect steel-concrete interface bond. This restriction is removed in this section.

Virtually all rebar in use today in the United States is deformed. Consequently,
the geometry of the actual steel-concrete interface is complex. For modeling purposes,
it is conventional to replace this surface by an artificial mean surface. In the present
analysis, this is the surface 9 in dimensional form and 8 in nondimensional form.

Given the mean surface 38, the actual steel-concrete interaction is approximated
by specifying an interface constitutive law between the traction T* on 8 and the

!
relative slip [u.'] = 2 . ui(l) across 0. This law must reflect local damage to the
concrete in the form of crushing and microcracking.

For most practical problems, it is sufficient to incorporate axial slip only. The
constitutive law associated with such slip can be expressed generally in the form

Ty = F(ly]) | (6.1)

where F is a functional of the entire slip history. A subset of (6.1) which has been
previously used by a number of researchers consists of a slip initiation criterion and a
slip rule; these are similar to the yield criterion and flow rule of incremental plasticity
theory. Application of incremental plasticity theory to slip phenomena has been
suggested by Drucker and Prager (1952), and employed by Seguchi et al. (1974),
Bazant and Gambarova (1980), and Bazant and Tsubaki (1980).

With little loss of generality, one may assume that the slip is axisymmetric; see
Murakami and Hegemier (1986). For axisymmetric axial slip, and an incremental slip
law, the phenomena of "slip” may be incorporated into the previously derived 2D and
3D models by replacing the constitutive relation for P1 in all equations with a relation
of the form
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o (2 o (1
B - K(l)[Ué ) - o) (6.2)

where () = 8()/8t, t denotes (nondimensional) "bookkeeping” time, and K(l) is a
tangent modulus which may depend on the field variables.

As an example, the following slip law has been frequently employed for cases in
which reversed slip does not occur:

= g2 _ ()Y
Py = p(l)[ - Y ] AP <Py o
(6.3a)
52 _ g -
P (cr)sgn[ul Uy ] if 1Pl = P(cr)
In the above,
= 2{n(1)

Plery = 2007 0 (/e (6.3b)
where Orer) > 0 is the (idealized) local critical bond stress. The law (6.3a)
correspomfs to a local rigid-plastic bond law of the form

. . *

[ul] =0 if |T 1| < a(cr) )

(6.3c)
. . R

[ul] #0, T 1= a(cr)sgn[ul] if ]T*ll = 0(er)

where, again, [u ] = ul(z) 1(1) represents the local interface slip across 8 in the

axial direction.

It should be recalled at this point that the quantitites [u] and [U] measure
different phenomena. The former on 8 means local slip across '3. The latter (see
(3.21a)) is a measure of the difference between en the a average steel and concrete
displacements over the cell. Consequently, [U] includes both elastic deformation and
slip; the quantity pm is a measure of this elastic deformation.
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SECTION 7
MODIFICATION FOR REBAR YIELD
When rebar yield occurs, the constitutive relations (5.9a) must be revised. |If

incremental plasticity is utilized to describe the rebar response, then (5.9a) must be
replaced by an incremental relation of the form

{0} = [Dl{e} . (7.1)

The matrix [D] represents a tangent modulus matrix whose coefficients may depend
on the plastic component of {e}.
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SECTION 8
BASIC EQUATIONS FOR UNIAXIAL DEFORMATION

A problem of considerable importance concerns the simulated behavior of a R/C
panel when the latter is subjected to uniaxial deformation. The relevance of this
problem stems from the ability to conduct faboratory experiments on R/C panels
under uniaxial deformation and hence to validate the developed model by comparison
of simulated and measured response.

The uniaxial B\roblem is depicted in Fig 8.1. The panel deformation is
constrained to the xl—direction. The rebar layout makes an angle ¢ with this
direction. The governing equations for the R/C panel are obtained from (5.23),

(5.24a) with C, C replaced by D,D; and (5.25a) with ﬁ(l) replaced by K(l)' The
appropriate constraints are

uéa) =0 ,a=1,2 . (8.1)

Under (8.1), the relevant governing equations reduce to
(a) Equilibrium

7 (1P)

1n,1*P =0,
. . 8.2)
20) _ 5 .o . (
95171 - P1 =0
where (.) 1 E d(“)/d;1 ;
(b) Interaction
e . e 2
- (2 _ 4
Pl = pll[ul Ul ] ! (8.3)

P 2 . 2
pu = K(l) cos“ ¢ + €2) sin“g ;
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(c) Constitutive

2 -~ 2 - 2
(1p) _ (1) (2)
o110 = 01Ut + DYl
(8.4)
2 -~ 2 - 2
(2p) _ (1) (2)
011 = D111+ DYy

The equations (8.2) - (8.4) are employed in detailed studies of simulation
response characteristics in the following two sections.
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SECTION 9

STIFFNESS DEGRADATION, DUCTILITY, FAILURE;
UNIAXIAL DEFORMATION IN DIRECTION OF STEEL (¢ = 0)

In this section, the nonlinear response of a R/C panel is examined in detail for
the case of monotonic uniaxial deformation and for ¢ = 0. The latter condition
implies that the steel is aligned with the direction of deformation; see Fig 8.1. Using
an elastic-brittle fracture model for the concrete, an elastic plastic model for the steel,
and an elastic-perfectly plastic description of the steel-concrete interface, response
characteristics are examined that relate to global stiffness degradation of the R/C
panel under extension, ductility of the R/C panel, and failure conditions. The
associated analysis incorporates progressive concrete cracking, steel-concrete slip, and
yielding of the rebar. Of particular interest is the influence of bond strength and
concrete cracking on the overall panel response.

9.1 FORMULATION OF THE PROBLEM.

The formulation begins by considering an initially unloaded R/C panel with two
starting cracks located at the panel termini as depicted in Fig. 9.1. The initial crack
spacing is 2&. The panel loading condition corresponds to the following boundary
conditions:

U1 =u, , 07 = 0 at Xy = '3

(9.1)
_(1) - _(23) _ = _
U1 u, 1 997 = 0 at X = - e

where u > 0. The notation (") above and in what follows indicates that the
quantities are dimensional.

Due to the problem symmetry, one need only consider half the panel as
indicated in Fig. 9.2. Upon shifting the x, -axis as shown, the appropriate boundary

oo 1
conditions are
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Figure 9.1. (nitially unloaded R/C panel.
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Figure 8.2. Partitioned subdomains on the interval 0 2 ;1 2 L
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Ul(l) =- 3, ‘1(?"‘) 0 atx; =0 ,
(9.2)
UM =0 20 avx =2

Given the boundary conditions (9.2), the governing equations (8.2) - ({8.4) must
be solved. Since the tangent moduli '311 and 6 (kP_ = 1,2) depend on the field
variables U\% when bond slip and rebar yielding occur, the solution for a particular
loading history u (t) must be, in general, obtained numerically. However, when u (t)
is monotonucally increasing, an analytucal solution can be constructed. For this
purpose, the domain x,€(0,2) must be partitioned into appropriate subdomains. The
vast majority of the Jesnred information concerning response characteristics can be
obtained by consideration of three such domains as follows (see Fig.9.2):

Region !: Plastic_debonded. In this interval the steel is plastic and the
steel-concrete interface is debonded.

Region II: Elastic debonded. In this interval the steel is elastic but the
steel-concrete interface is debonded.

Region Ill: Elastic bonded. - The steel is elastic and the interface is
bonded in this interval.

Let us now assume that (1) the steel is elastoplastic with linear workhardening,
Fig. 9.3; (2) the concrete is elastic-brittle fracture; and (3) the interface bond is rigid-
perfectly plastic, Fig. 9.4. Further, in an attempt to simplify the analysis with little
loss of pertinent information for ¢ = 0, it will be assumed that D,, ~ 0 in (8.4).
Under these conditions, the basic equations for each region are:

Region | (0 < ;1 < ;p)

309) . 7 =) _F .
(er) © : 11 1 (cr)
(9.3)
IO ST I NG T
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- {

Figure 9.3. Rebar constitutive relation.

]

-
Augy [u€2)- y( 1)

Figure 9.4. Bond-¢lip relation.
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where P *)" and E(z) are constants;

() B
Region 1| (xp < x < x)
= Qp) .5 - (2p) _ 5 -
011,1 * F'(cr) =0, 011,1 P(cr) =0

5 L WEDGR) | G | @GR

where E(1) is a constant.

Region Il (x, < x, < 0)

a](.lui * p(l) [Uf ) - U](. )] =0 !
- 2p =(2 =(1
01(1,3. - p(l) [Ul( ) - U](. )] =0 !

?

;f}p) = n(l)g(l)gfli

;ffp) = n(2)§(2)0{2i

9.2 SOLUTION FOR FIELD VARIABLES.

S$SS-DFR-89-10119

(9.4)

(9.5)

The solution of the governing differential equations (9.3) - (9.5) is easily
obtained for each region. These solutions can then be pieced together at the region
endpoints by imposing continuity of both displacements U ] and axial stresses g, \2P),
Finally, the solution is completed by satisfaction of the boundary conditions @2)

The result is as follows:

Region |
I
Y = T(0) ~ T.(L;)ﬂ X
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iy = MON ilgx x
o - L
" Ep)
7{%) . —a-%)—l X, (9.6)
n
@ _ex) s
1 ° @@ ¢
« iz o a®
@ =@ ) ")
(rx)
Region i
- 1 ; ~
" = - nfi) x

(1) (o) O(rx) =~
11 TEM T LM *

9.7

=(2a) _ I(rx) ¢
1 (2 ’

ag

o2 - (k&
1 - (2@
Region il
E E
-(la) (m) - _(_l!)_ cosh f2(1 - x)
I mmm”w@)aHJu%mwwﬂ'
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@) _fm - [ o
SR O T R OME GO W S e

i

’

] coshZ(1 - %)
(o) (2)coshpl[1 - x

e

(s)J
(9.8)

mi

N, fm % |- r @°(0) | coshpe(1 - %)
T D@ T Ce0* e T e Do 1 5] |
S

@ . _Em%e)

11 T @@® [”(rx) “(s) T g

o

= ] coshfe (1l - X)
2)=(2
(0) |, (2)E(2) oen ﬂl[l = x(s)]

Na?

In the above, the following variables have been used:

_ 2 (1), ()
x=X 5, = —— ()

2’ " (rx) r(l)ll
p =(1) = 1 . 1
°(0) ¥ 11 (Q'Ym LD T @@ ®-9

2 _ 402 = .
(f2)° = K& /E(m) , E(p) = plastic modulus

8 X
Ne)
(2) (2
Further, the parameter ;(s) is obtained by solution of the transcendental relation

x 1 _Em 7o) : (9.11)

X(s) * (p?_)tanh[pz'[l - ';(s)]] T gD 7 )
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Overall Displacement.

In addition to stress and strain fields in each region, one can solve for the
associated displacements U ). Of particular interest is the displacement u(o) = .
U(1 (0) which is given by

E
- W By - . _
_ Y0 () T EM (o) tanh o1 ”(s)]] Em (o) 1~ %(s))
“o) T REVFTEN [ NOROFE)
(9.12)
o rx ~2 ~2 i(g)_ ~ ~ Erx ~
" MM ["(s) i "<p)] 6) ["(s) } "(p)] * 2,,(1)5( , EMONON
P
where
o [E -0 ]
° - p— ’
E E®)
(9.13)
E(y) = Rebar initial yield stress.

9.3 FRACTURE CRITERION AND SEQUENCE.

The developed mixture model of reinforced concrete can simulate the cell-
averaged fields f(aa)(x) for each material. The model can also be used to estimate
the local fields f( )(x X .e) within each material. Consequently, once an appropriate
fracture criterion has been supplied, then one can proceed to examine a variety of
possible fracture modes. A subset of such modes include primary (i.e., through)
cracks, secondary (non-through) cracks, termini "cone” cracks, and axial splitting
cracks. Although all such fracture modes are of interest, the present study will focus
on the influence of primary cracks on the overall response characteristics of reinforced
concrete.
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An elementary, yet useful, criterion for the initiation of a primary crack can be
postulated as follows:

max Effa) = féc) (9.14)

where f{c) measures the "tensile strength” of the concrete.

Examination of the stress field 311(23) in each of the foregoing regions reveals
o that the maximum average axial stress in the concrete, max ;1§2a)' occurs at ;1 = L
Consequently in the absence of imposed statistical variations of ffc) with location, the
first new crack (i.e., the first new crack system) will consist of a single crack located
at the mid-point between the two initial termini cracks. The value of the applied
stress ;(o) when this first primary crack initiates is obtained from solving (9.8) with
;u(Za) = ft(c) and x = 1 together with (9.11). Using this value of 3(0). the
corresponding displacement u o) is obtained from (9.12). Immediately_ after fracture,
the specimen suffers a stress drop at the same value of displacement u ol The new
® applied stress Eo corresponding to this drop is obtained by replacing £ by £/2 in
(9.12) and (9.11). It is noted that this leads to jumps in ;(rx) and ;(s). i.e.,

additional slip occurs during the fracture process.

® Following the formation of the first new crack, the R/C element consists of two
. subelements, each of which is geometrically identical to the original element with cne
exception: The subelement length (or crack spacing) is now & rather than 22. Each
subefement is now extended monotonically from the value of the displacement
® corresponding to the initiation of the first fracture. The value of the applied stress
;o at a given displacement for each subelement is given by (9.12), (9.11) with 2
replaced by 2/2. The value of 0(0) corresponding to the initiation of a primary crack
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within each subelement is obtained from (9.8), (9.11) with x = 1, £ replaced by 2/2
and 31}23) = ffc). The new applied stress o o corresponding to the stress drop
subsequent to fracture is obtained by replacing £ by £/4 in (9.12) and (9.11).

Following the formation of the primary cracks in the above subelements, the R/C
element consists of four subelements, each of which is geometrically identical to the
original element except that the subelement length is now £/2 rather than £ Each
subelement is now extended monotonically from the value of the displacement
corresponding to the initiation of the second crack system, and the entire process is

repeated.

The foregoing algorithm leads to a crack sequence as depicted in Fig. 9.5. A

t{{ncal corresponding stress-strain curve is depicted in Fig. 9.6; here ¢ =

(O represents the overall applied stress based on the entire specimen crgss-

sectlon and e , = |u(0)/(2/N)] is the overall strain (22 = original specimen length, N
= number of 'subelements).

9.4 STIFFNESS DEGRADATION.

With the aid of the crack evolution algorithm described in subsection 9.3,
stiffness degradation during monotonic extension of a R/C specimen was examined in
detail for the case ¢ = 0, i.e., when the direction of loading was aligned with the
rebar. The "stiffness” discussed refers to either the tangent or secant modulus
associated with the overall stress (a(o)) versus the overall strain €e) See subsection
9.3.

9.4.1 Influence of Bond Strength.

Bond strength was found to have a major influence on stiffness degradation.
This influence can be observed in Fig. 9.7 which exhibits predicted relative tangent
stiffness versus global strain for various values of steel-concrete bond stren 5th ranging
from 200 psi to ». In this example, the steel volume fraction n = 001
(1 percent), the concrete cover r 2 /2 = 0.10, the concrete tensile strength f
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400 psi, and the rebar hardening characteristics are given by (ags) - 055))/055) = 0.33;
the latter is perhaps typical of grade 60 rebar.

The two extreme cases in Fig. 9.7 correspond to a bond strength of » and a
bond strength of 200 psi (strengths in the range 600 - 800 psi are considered typical
of many practical situations). In the former, stiffness degrades by cracking only i.e.,
in the absence of slip. In the latter, stiffness degradation is due to slip only.
Intermediate cases involve both slip and cracking. It is evident that the rate of
stiffness degradation increases rapidly with decreasing bond strength, i.e., increasing
slip. It is also evident that tangent stiffness computed in the absence of slip (perfect
steel-concrete interface bond) represents an upper bound.

9.4.2 Influence of Steel Volume Fraction.

The influence of steel volume fraction on stiffness degradation is seen by an
examination of the 200 psi bond strength example in Figure 9.7 where stiffness
degradation is influenced by slip only. The results, for steel volume fractions ranging
from 2 to 0.1 percent, are given in Figure 9.8. The rate of stiffness degradation is
shown to be gieater for smaller steel volume fractions.

For cases involving both slip and cracking, the same trends are to be found
(i.e., stiffness degradation occurs more rapidly for smaller steel volume fractions). It
should be noted that the sharp decrease in overall tangent stiffness for steel volume
fractions of 0.25 and 0.1 percent in Figure 9.8 is due to the rebar undergoing plastic
deformation.

9.5 DUCTILITY AND FAILURE.

The developed mixture model of reinforced concrete provides stress and strain
fields for each material component. Consequently, if the rebar failure condition is
specified, then the mixture model can be applied to study the influence of various
parameters such as bond strength, steel volume, concrete tensile strength, etc., on the
overall ductility of the composite. Such a parametric study was conducted. The
results, which appear to be entirely new, are presented below.

A-54




-uoijepeiBap sSaUpIs UO UOIDEI) IAWNJOA (3IIS JOo dUINPU|  °8°6 anBiy

. 11/(0)pmn| ‘urenys reqorn
100 c000° 0

SSS-DFR-89-10119

1sd 0°'00% = 3 ‘15d 0°002 = &0
01'0 = /@1 ‘€€°0 = 0 0/[0" 0 ~ ¢’ 0]

ureq)s [eqory) ‘s sseujng aAlje[oy

03/°8 ‘sseuzpng JueSury, sAne[RY

A-55




SSS-DFR-89-10119

9.5.1 Definition of Ductility.
For purposes of this study, a ductility measure & shall be defined according to
D = e /el (9.15)

where e(s) denotes the failure strain of the rebar alone, and e, is the overall failure
strain o¥ the reinforced concrete composite. Consequently, & = 1 for the rebar alone
while @ < 1 for the composite.

It is noted that, for most practical situations, the strain field in the steel will be
highly nonuniform. An example is depicted in Fig. 9.9. Consequently, @ can be
expected to be considerably less than unity for most cases of interest.

9.5.2 Influence of Bond Strength.

Bond strength exerts a major influence on overall specimen ductility. This
influence is exemplified in Figure 9.10 for a range of steel percentages. The concrete
tensile strength in this example is sufficiently high to preclude concrete cracking prior
to failure of the rebar. As can be observed, the ductility reduces sharply from 1.0 as
the bond strength is increased from zero. For bond strengths in excess of 600 psi,
the ductility is generally less than 0.1 for a range of practical steel percentages -- in
the absence of cracking.

9.5.3 Influence of Concrete Tensile Strength.

Concrete cracking -- or concrete tensile strength -- also plays a major role in
overall specimen ductility. Figures 9.11 - 9.14 exhibit the influence of concrete
cracking for a range of steel percentages. It is evident that the effect of progressive
cracking is to dramatically increase the overall ductility. Cases where cracking occurs
are indicated by the curves which show sudden changes in Z. A comparison of
cases reveals that ductility in general increases as the concrete tensile strength
decreases.

9.5.4Influence of Rebar Strain Hardening.

The rebar in the current study was modele_;i as piecewise linear under monotonic
extension with an elastic modulus of 3 x 10" psi and a plastic modulus, Ep. of
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approximately 2-3 orders of magnitude less. Within the context of this description,
the ductility was found to depend only weakly on the strain hardening modulus E .
This weak dependence can be observed from Figures 9.15 - 9.18 wherein the
modulus Ep varies from Ep =3 x 10 psi to Ep =6 x 10° psi.

9.5.5 Ductility versus Dimensionless Bond Strength.

In the process of conducting this study, it was discovered that one can collapse
all ductility versus bond strength data by graphing that ductility versus a
dimensionless bond strength defined according to Er /Em where 0 and E_ are given
in (9.9). The resulting master curve is shown in )‘:ig. 9.19. This curve applies for
cases involving cracking as well as for those wherein no cracking occurs. When
cracking occurs, 22 represents the crack spacing. If slip only occurs, 22 is the length
of the specimen.
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SECTION 10
EXTENSION OBLIQUE TO STEEL
In this section, the response of a R/C panel is examined for the case of
monotonic extension in a direction which is oblique to the steel layout, Fig. 8.1. The
focus of the presentation is on the influence of the angle ¢ on stiffness degradation.
in the analysis to follow, the steel-concrete bond is assumed to be perfect.

10.1 BASIC EQUATIONS AND SOLUTION.

The governing equations for this case are

A(lp) [ﬂ(l)cos $ + p(z)sun ¢][ (2) 1(1)] =0,

3130} - [payeoss + pgysin®d) [0 - o) =0 (10.1)
~(1 S0 2
”§1p) =0,V { X D12U§ % ’

) _p5 o) ,p 0@
011 = D1Vp1 * DodYys

Substitution of (10.2) into (10.1) furnishes

O B B M O]
D l .o, —1—. p 1 1 =0
11 °2 12 2 11 2 - Yo
dx1 dx1 €
(10.3)
T OB TR (O IS)
D - + D - - = 0
12 °2 22 2 11 2 ’
dx1 dx2 €
where
4 = 2 . 2
pll g ﬂ(l)cos $ ¢+ p(z)sln ¢ (10.4)
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and where p(l). pm are given by (5.18).

The solution of (10.3) is readily obtained in the form

. Ax Ax .
U —ae Tahe Temg eA,
(10.5)
~ XX 'XX -~
U1(2) =-c Ale 1_ cA2e 1 + A3x1 + A4
where
\2 = [pfl] Dyy * Doy + 2045
ol o B ,
€ D109 - D32
(10.6)
‘2 - - -~ - -
P i D12[2011 * 0y [0y, + Dy)
(041 + 019) (0 + 03] [0 + 0y5)
Equations (10.5) lead to the concrete stress:
“(2p) _ (2)/(2a) _ (1) q(2)
or1 . =0l D U + 022U1
X; - -~ -X; -~ -~
= 1 1
=Ae 1[0y, - 80,,) + Aje 1 A[- D, + 8D, (10.7)

-

A3(0y + Dy

+

The following boundary conditions are now specified:
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Ggl) = G§2) =0 at ; =0 ,

1

U - g Satx, =2, (e specified) (10.8)
1 1

;ffa) = 0 at ;1 =2 .

Substitution of (10.5) and (10.7) into (10.8) furnishes

_e(s 5 ).
A = E0y, ¢ D) = - A
_ 2R (g -
A3 = -3 [012 -c 022] cosh \L . (10.9)
A4 =0,
where
a = 2D, + Bzz]sinh M - 22D, - e 622]cosh Y3 (10.10)

The solution of (10.3) subject to the boundary conditions (10.8) can now be
written in the form

G{l) = % [[612 + 622]sinh )‘;1 - )\[612 -c 622] (cosh AR) [;1]]
(10.11)
0 = - g%g[c Dy, * Dyo)sinh Axy - A[D;, - € D) (cosh Ae) [x]]
The displacements (10.11) furnish the stresses:
o1 - z%&l [(912 + Py [Dyy - © Byp)cosh axy
- x[612 =€ 622][611 * 512]‘°Sh XQJ '
(10.12)
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(2)7(2a) _ 2eA[(R 5 1p - en -
" T [[012 * D22] [012 ¢ l)22]“5" My
-3 (D5 - € D) By, + Dyp)cosh 2e]

+ Examination of (10.12b) reveals that 31}23) attains a maximum at Ql = 0: the
corresponding vaiue of 741 is given by

(2502 (7 _o) =222(5 . p )[p.. - cD -

n @52 = 0) = R, . 0,))(0,, - ¢ Dyp) (1 - cosh M) . (10.13)
Similarly, examination of (10.12a) reveals that max alila) occurs at 3\(1 = £ where

W) 1a) (5 _ ) - 2200 D Do - D2

nMgla) (L - o) = 2B ) (p,,0,, - 0Z,]Jcosh A2 . (10.14)

10.2 FRACTURE CRITERION AND SEQUENCE.

Consider now the problem of predicting the evolution of the primary crack field
in the R/C specimen when the latter is subjected to monotonic extension. If
condition (9.14) is again adogted as the criterion for primary crack initiation in the
concrete then, since max {7\“( 3) again occurs at the specimen center X, = 0 (see
(10.13)), the fracture sequence as well as the resulting overall stress-strain behavior
can be computed using an algorithm similar to that outlined in Section 9.3.

10.3 STIFFNESS DEGRADATION.

Figure 10.1 shows the degradation of overall secant stiffness with increasing
overall specimen strain for rebar angles ranging from ¢ = 0° (rebar along loading
direction) to ¢ = 60°. Remarkably, the degradation curves fall into a reasonably thin
band for the strain interval shown. However, while the stiffness "decay length” is
similar for different rebar angles, major differences occur in both the "initial” stiffness

* Secant and tangent stiffness are equivalent when the interface bond is perfect and
the rebar remains elastic. A-72
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(zero strain, E ) and the "final” stiffness (» strain, E ). The variations in these
initial and final stiffness with rebar angle are depicted in Figures 10.2 and 10.3 for
steel volume fractions ranging from 0.1 to 1.0 percent. Variations in the final
stiffness are masked in Figure 10.1 by the fact that they all tend to be approximately
an order of magnitude smaller than the initial stiffness.

When reviewing the data depicted in Figure 10.1, it should be recalled that the
steel-concrete interface bond has been assumed to be perfect, and the rebar has been
taken as elastic. As can be observed in the examples cited for the case ¢ = 0°,
steel-concrete interface slip and rebar plasticity can be expected to alter the foregoing
results to a significant degree in some cases.
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SECTION 11

EXTENSION OF MIXTURE MODEL TO ORTHOGONAL
BI-DIRECTIONAL REBAR LAYOUTS

The mixture models discussed in the preceding sections apply for uniaxial rebar
layouts. Most practical cases,however, concern bi-directional or tri-directional layouts.

In what follows, the previous mixture theory is extended to include the case of
bi-directional orthogonal rebar layouts. Both rebar plastic deformation and steel-
concrete interface slip are included in the analysis.

11.1 A 3D CELL FOR TWO REBAR SYSTEMS.

The R/C material to be considered is depicted in Figure 11.1a. As indicated,
two reinforcement systems are now involved. These are designated as Rebar
System 1 and Rebar System Il Both systems are presumed to be periodic. This
premise leads to the 3D cell illustrated in Figure 11.1. This cell is adopted as the
basic building block in the following development.

11.2 SCALING AND MICROCOORDINATES.

With reference to Figure 11.1, the quantity
5= (B,8,8,)3m/? (11.1)

is selected to represent the cell "size” and the parameter € = K/K is adopted as the
micro-to-macro dimension ratio where the meaning of A is as was indicated in
Section 3.1, i.e., A is a reference macro length. Next, the space variables x and x*
are defined according to

*

x=x/k , x"=x/b . (11.2)

As in the previous analysis for the unidirectional steel layout, the components X, and
x“i represent "macro” and "micro” coordinates.
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11.3 MULTIVARIABLE-FIELD REPRESENTATION AND x*-PERIODICITY
CONDITION.

For the case of bi-directional steel reinforcement, the x®-periodicity condition is
stated in the form

u(2){x iy n x*] _ ugz)[x I, y x*}
i ’ 2 1%o%3 i ’ 7+ XoiX3)
oD, xx, - I, x*] ] u(2)[x o fx, -« (11.3)
1 L ’ 1‘ 2 ! 3 i ’ 1, 2 ) 34
( N
)] N fifél - u(2)[x .. Ty
i % R %o 2 ) =W » X110 Xo» 5 )

11.4 TRIAL DISPLACEMENT FIELD (DISPLACEMENT MICROSTRUCTURE).

Two basic premises are now stated regarding the displacement microstructure.
These are:

(1)l The interaction between the two sets of rebar layouts which occupy the regions
( and AB) are negligible (this implies that the interaction body force between u )
and ul) is negligible).

(2) The matrix displacement microstructure can be decomposed as follows:

2 .- L (2 1(2 . v . II(2 . x 2
“§ ) (x,x%) = “g(l)(‘) v € "iglg["“z' ’3] * ”i(f))[*"s'*1]] + 0le {1i.4)

where the superscripts I and II refer to rebar sets I and II (see Fig. 11.1).

Under the assumptions (i) and (2) above, the trial displacement fields for the
rebar and concrete are stated in the form

Rebar_Set I (material 1; a=1)

O] 0000 « 0t ®(s34) + EomOlep]  carsm
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Rebar_Set II (material 3;a=3)

o) = 000 + BB ()  HFO g o] v

Concrete (material 2;a=2)

ui(z) [x,x"‘] = Ui(.2) (x) + E[g (x)g(z)[ ] + gli:(x)g(z) [x;,xg]

(11.5¢)
I (i ) o MR g,
where
T =L (11.6a)
0 = 81w . (11.6b)

A typical cubic cell is now considered as illustrated in Fig. 11.2. Further, a
multiple concentric cylinder’s approximation for this cell is adapted as depicted in
Fig. 11.2. (The length of this cell is adjusted to retain the original volume of the
matrix). Within the context of the concentric cylinder’s approximation, the trial
displacements (11.5) are rewritten in the form

Rebar Set 1

oM {x,x*) = UB () + [& 6™ (rpcost; + 81g™M (rpsing;] + 0le?)

=M e[gI(x) EHO (1)] (11.7a)
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Figure 11.2. Cubic cell and circular cylinder approximation.
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where

1 1
A )('1] = 0 (11.7b)

Rebar Set II

uga)[x,x*] = Ugs)(x) + e[§§1(x)h(3{rll]cosﬁll + g%l(x)h(strll]

1
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